Review of broad-scale drought monitoring of forests: Toward an integrated data mining approach
نویسندگان
چکیده
Efforts to monitor the broad-scale impacts of drought on forests often come up short. Drought is a direct stressor of forests as well as a driver of secondary disturbance agents, making a full accounting of drought impacts challenging. General impacts can be inferred from moisture deficits quantified using precipitation and temperature measurements. However, derived meteorological indices may not meaningfully capture drought impacts because drought responses can differ substantially among species, sites and regions. Meteorology-based approaches also require the characterization of current moisture conditions relative to some specified time and place, but defining baseline conditions over large, ecologically diverse regions can be as difficult as quantifying the moisture deficit itself. In contrast, remote sensing approaches attempt to observe immediate, secondary, and longer-term changes in vegetation response, yet they too are no panacea. Remote sensing methods integrate responses across entire mixed-vegetation pixels and rarely distinguish the effects of drought on a single species, nor can they disentangle drought effects from those caused by various other disturbance agents. Establishment of suitable baselines from remote sensing may be even more challenging than with meteorological data. Here we review broadscale drought monitoring methods, and suggest that an integrated data-mining approach may hold the most promise for enhancing our ability to resolve drought impacts on forests. A big-data approach that integrates meteorological and remotely sensed data streams, together with other datasets such as vegetation type, wildfire occurrence and pest activity, can clarify direct drought effects while filtering indirect drought effects and consequences. This strategy leverages the strengths of meteorology-based and remote sensing approaches with the aid of ancillary data, such that they complement each other and lead toward a better understanding of drought impacts. Published by Elsevier B.V.
منابع مشابه
An Integrated DEA and Data Mining Approach for Performance Assessment
This paper presents a data envelopment analysis (DEA) model combined with Bootstrapping to assess performance of one of the Data mining Algorithms. We applied a two-step process for performance productivity analysis of insurance branches within a case study. First, using a DEA model, the study analyzes the productivity of eighteen decision-making units (DMUs). Using a Malmquist index, DEA deter...
متن کاملPreventing Key Performance Indicators Violations Based on Proactive Runtime Adaptation in Service Oriented Environment
Key Performance Indicator (KPI) is a type of performance measurement that evaluates the success of an organization or a partial activity in which it engages. If during the running process instance the monitoring results show that the KPIs do not reach their target values, then the influential factors should be identified, and the appropriate adaptation strategies should be performed to prevent ...
متن کاملWidespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought.
Climate change is progressively increasing severe drought events in the Northern Hemisphere, causing regional tree die-off events and contributing to the global reduction of the carbon sink efficiency of forests. There is a critical lack of integrated community-wide assessments of drought-induced responses in forests at the macroecological scale, including defoliation, mortality, and food web r...
متن کاملApplying an integrated fuzzy gray MCDM approach: A case study on mineral processing plant site selection
The accurate selection of a processing plant site can result in decreasing total mining cost. This problem can be solved by multi-criteria decision-making (MCDM) methods. This research introduces a new approach by integrating fuzzy AHP and gray MCDM methods to solve all decision-making problems. The approach is applied in the case of a copper mine area. The critical criteria are considered adja...
متن کاملDrought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), usin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016